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Abstract. Hydrodynamic modeling has been increasingly used to simulate water surface elevation which is important for 

flood prediction and risk assessment. Scarcity/inaccessibility of in-situ bathymetric information has hindered hydrodynamic 

model development at continental-global scales. Therefore, river cross-section geometry has commonly been approximated 

using highly simplified generic shapes. However, strong correlations appear between cross-section shape parameters and 

hydraulic roughness in a hydraulic inversion approach. This study introduces a novel parameterization of 1D hydrodynamic 15 

models that reduces ambiguity by combining cross-section geometry and roughness into a conveyance parameter. Flow area 

and conveyance are expressed as power-law functions of flow depth, and thus are assumed to be linearly related in log-log 

space at reach scale. Data from a wide range of river systems show that the linearity approximation is globally applicable. 

Because the two are expressed as power-law functions of flow depth, no further assumptions about channel geometry are 

needed. Therefore, the hydraulic inversion approach allows for calibrating flow area and conveyance curves in the absence 20 

of bathymetry and hydraulic roughness. Its feasibility and performance are illustrated using satellite observations of river 

width and water surface elevation.  

1 Introduction 

Hydrodynamic modeling of rivers is important for quantitative assessment of river flow and water level dynamics and, 

critically, for risk assessment and flood prediction. It has been widely used for many applications, such as estimates of 25 

hydraulic parameters (e.g. water surface elevation (WSE), longitudinal profile, velocity), flood forecasting, inundation 

estimation, risk assessment, river maintenance, etc. (Andreadis and Schumann, 2014; Bates et al., 2014; Bierkens, 2015; 

Blöschl et al., 2015; Jiang et al., 2020). Nowadays, in the era of big data, earth observation datasets, cloud computing, and 

complex modeling platforms are available for better simulations of WSE at different scales (Fleischmann et al., 2019; 

Gleason and Durand, 2020; Ward et al., 2015).  30 
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Traditional hydrodynamic modeling approaches require detailed river channel bathymetry, which is usually represented 

by cross-sectional geometry. There are, however, a limited number of rivers, for which the surveyed cross-sectional 

geometry is available. The challenge that arises in many studies is how to approximate the channel geometry. This is a 

common problem facing the scientific community. A common approach is to parameterize channel geometry as a simple 

shape, e.g. a rectangle or triangle (Garambois et al., 2017; Jiang et al., 2019; Neal et al., 2012; Schneider et al., 2017). 35 

Instead of rectangular or triangular shapes, Dingman (2007) and Neal et al. (2015) used a power function (bankfull width 

and depth are required) to represent channel shape variability between the limiting cases of rectangular and triangular shape. 

However, Neal et al. (2015) used a uniform shape instead of varying shapes along the channel. Similar parameterizations of 

cross section shapes were used in Mejia & Reed (2011), and the effect of assumed shapes on simulated flows was 

investigated. Some studies estimated river bathymetry using global DEMs combined with an assumed simplified shape (e.g. 40 

rectangle) of the submerged portion of the river. Domeneghetti (2016) used DEM data to infer the river bathymetry based on 

width-elevation relationships of high flow and low flow, respectively. Similarly, a few studies infer bathymetry from water 

surface height and width by fitting the relationship between the two. Obviously, the success of this approach depends on the 

channel exposure (Mersel et al., 2013). Moreover, combinations of remote sensing data and empirical statistical relationships 

or data assimilation approaches have also been used to infer effective bathymetry (Brisset et al., 2018; Dey et al., 2019; 45 

Durand et al., 2008; Fonstad and Marcus, 2005; Grimaldi et al., 2018; Larnier et al., 2020; Legleiter, 2015; Moramarco et al., 

2019; Schaperow et al., 2019). For instance, Durand et al. (2008) estimated bathymetric depth and slope by assimilating 

synthetic WSE data from the Surface Water and Ocean Topography (SWOT) mission into the LISFLOOD-FP hydrodynamic 

model. Larnier et al. (2020) also applied data assimilation to infer effective bathymetry from synthetic SWOT altimetry 

measurements within an inverse framework. Here we do not comprehensively review bathymetry estimation using upcoming 50 

SWOT mission data. Instead, we refer the reader to Biancamaria et al. (2016) and Gleason & Durand (2020) for a broader 

overview.   

In addition to the channel bathymetry, channel roughness is another factor that is important to simulate flow dynamics 

with sufficient accuracy (Bates et al., 2014; Neal et al., 2015). Usually, a uniform value is adopted to represent 

channel/floodplain roughness although large heterogeneity of river morphology exists in most cases (Annis et al., 2020; 55 

Jiang et al., 2020; Pappenberger et al., 2007; Schumann et al., 2007). When calibrating channel geometry parameters along 

with roughness parameters, strong parameter correlation appears between cross section shape (wetted perimeter) and 

hydraulic roughness. That is, roughness parameter will be “effective”, not only representing the friction but also 

compensating for inaccurate geometry, which affects the hydraulic resistance through the wetted perimeter. Therefore, 

roughness and geometry parameters trade-off against each other, which has been widely reported (see Garambois & Monnier 60 

(2015) and references therein).  

In order to address this ambiguity in hydraulic inverse problems, we put forward a method to parameterize and calibrate 

the 1-D river models in a different way. Instead of roughness and geometry, flow area and conveyance curves as functions of 
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flow depth are estimated in an inverse modeling workflow. In this way, only the dependence of area and conveyance on flow 

depth is estimated, regardless of the detailed channel shape and roughness. This paper illustrates this approach for the 65 

calibration of an 1D MIKE Hydro River model (DHI, 2017) to simulate WSE dynamics, using satellite observations of WSE 

and river width.   

2 Methods 

2.1 Theoretical background 

Flow in open channels can be described by the continuity equation and momentum equation, known as the de Saint-Venant 70 

equations (Chow, 1959):  

𝜕𝐴(𝑑)

𝜕𝑡
+
𝜕𝑄

𝜕𝑥
= 0                                                                      (1) 

𝜕𝑄

𝜕𝑡
+

𝜕

𝜕𝑥
(
𝑄2

𝐴(𝑑)
) + 𝑔𝐴(𝑑)

𝜕𝑑

𝜕𝑥
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where: A is the cross-sectional area; Q is the discharge; d is the flow depth; S0 is the slope of the channel bottom; Sf is the 

friction slope; g is the gravity acceleration; t is time and x is chainage, i.e. the distance along the channel.  75 

Equations (1) and (2) compose the 1-D dynamic wave model. In the absence of cross-sectional geometry, there are five 

unknowns in this model, i.e. A, Q, d, So, and Sf. To effect a solution of Q and d, information about channel geometry and 

friction slope is required. Flow area A and channel slope So can be obtained once bathymetry is known. Friction slope Sf can 

be approximated using the Manning formula or the Chézy formula (Chow, 1959).  

Here, we express friction slope as a function of conveyance (K) and discharge (Q) using Manning’s equation 80 

𝑄 = 𝐾𝑆𝑓
1

2                                                                                       (3) 
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3                                                                                     (4) 

where, n is the Manning roughness coefficient and R is the hydraulic radius. The conveyance is a measure of water carrying 

capacity of a cross section since it is directly proportional to discharge (Chow, 1959).  

Substituting for Sf, the momentum equation is written as:  85 
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This version of the momentum equation (5) indicates that, in steady state (for both kinematic wave and diffusive wave), K(d) 

is much more sensitive than A(d), and A(d) appears only when the flow accelerates or decelerates.  

2.2 Parameterization of flow area and conveyance curves  

Equations (1) and (5) provide two equations with still five unknowns, i.e. A, Q, d, So, and K. However, K and A are related to 90 

flow depth, d. If K and A can be expressed as functions of d, Q and d can be solved for, given the slope So but without the 

need for detailed information on cross-sectional shape and roughness. The hydraulic geometry relations are widely used to 

relate the water surface width, average depth, and average velocity to discharge since it was introduced by Leopold and 

Maddock in 1953 (Bjerklie et al., 2005; Dingman, 2007; Ferguson, 1986; C. J. Gleason, 2015; Leopold & Maddock, 1953). 

Dingman (2007) has derived explicit equations for the exponent and coefficients in the power-law function, explaining the 95 

variation of hydraulic geometry in different rivers. In some way analogous to the at-a-station power-law of hydraulic 

geometry, power function relationships that relate flow area A and conveyance K to flow depth d of a cross section can be 

written, respectively, as (Chow, 1959; Garbrecht, 1990):  

𝐴(𝑑) = 𝑎 𝑑𝛽                                                                                        (6) 

𝐾(𝑑) = 𝑐 𝑑𝛿                                                                                         (7) 100 

𝑑 = 𝐻 − 𝑍0                                                                                    (8) 

where, a, β, c and δ are empirical coefficients; H and Z are WSE and channel datum, i.e. water surface elevation for zero 

flow.  

Transforming equations (6) and (7) into log-log space, we can write the following linear relationships:  

log 𝐴(𝑥, 𝑡) = 𝛼(𝑥) + 𝛽(𝑥) log 𝑑(𝑥, 𝑡)                                                       (9) 105 

log𝐾(𝑥, 𝑡) = 𝛾(𝑥) + 𝛿(𝑥) log 𝑑(𝑥, 𝑡)                                                      (10) 

where α = log (a) and γ = log (c). This relationship is investigated for different rivers having a wide range of river width 

(three orders of magnitude) to show its validity for real-world rivers. Note that, these six rivers are used simply due to the 

availability of cross-section data (see a map of rivers in Fig. S1). Strong positive linear relationships are readily revealed by 

plotting the logarithmic A ~ d, and K ~ d pairs for any given cross section below bankfull depth (Figure 1). A discontinuity 110 

may occur if significant flood plain exists as the case of the Yellow River (Figure 1d). Chow (1959) and Garbrecht (1990) 

suggested using separate functions to approximate the hydraulic properties below and above bankfull depth. In this initial 

study, one single power-law function is used. Note that the conveyance changes with the Manning’s number, but the linear 

relationship holds (Fig. S2). To calculate conveyance, spatially varying, randomly distributed Manning’s number ranging 

between 0.015 and 0.05 are used to mimic real-world rivers instead of unrealistic uniform values along the whole reach. A 115 

uniform Manning’s number results in a much stronger linear relationship (Figures S2 and S3).  

https://doi.org/10.5194/hess-2021-210
Preprint. Discussion started: 19 April 2021
c© Author(s) 2021. CC BY 4.0 License.



5 

 

 

Figure 1. Plots of flow area and conveyance against flow depth in log-log space. In each plot, dots in the same color are 

from one certain cross section. Linear relationships between logarithmic area / conveyance and depth are estimated for each 

cross section, i.e. in an “at-a-station” manner. The median value of slopes of linear regression is given in each plot. In total, 120 

there are 60, 70, 335, 98, 51, 165 cross sections spaced at 2.5 km, 6 km, 1 km, 8 km, 150 m and 300 m, respectively, for (a) 

Changjiang, (b)Songhua, (c) Po, (d) Yellow, (e) Åmose, and (f) Vejle rivers. Please refer to Figure S1 for a detailed map. 

Note that, Manning’s number used for calculation of conveyance for each cross section is randomly generated between 0.015 

and 0.05.  

However, there are four more parameters (i.e. α, β, γ, δ) for each cross section to be estimated. Due to the linear nature 125 

of logarithmic pairs of (A, d) and (K, d), a linear relationship can be derived between logarithmic A and K as shown in the 

data (Figure 2). Therefore, the flow area and conveyance curves can be connected by: 

𝛼 = 𝑝1 + 𝑝2𝛾                                                                                      (11) 
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𝛽 = 𝑝3 + 𝑝4𝛿                                                                                       (12) 

It should be noted that the linear relationships (i.e. equations 11 and 12) are only valid at river reach scale instead of 130 

individual cross sections. Interestingly, p1, p2, p3, and p4 are nearly constant independent of rivers although marginal 

deviations exist (Fig. S4). As shown in Figure 2, when pooling cross sections of all rivers together, a clear linear trend shows 

up for both α ~ γ and β ~ δ. This indicates that parameters p2 and p4 should vary in a very narrow range around 1.0 for all 

rivers; And parameters p1 and p3 should be allowed to be slightly varying around - 1.4 and - 0.7 to adapt to individual rivers. 

Thus, there are two spatially varying parameters (i.e. α, β) and four uniform parameters (i.e. p1 ~ p4) in addition to bed slope 135 

So (calculated from datum Z0) to be constrained in order to solve Q and d. Therefore, a new parameterization of a river model 

can be written as: 

log10(𝐾(𝑥, 𝑡)) = 𝛾(𝑥) + 𝛿(𝑥) log10(𝑑(𝑥, 𝑡))                                                                  (13) 

log10(𝐴(𝑥, 𝑡)) = (𝑝1 + 𝑝2 𝛾(𝑥)) + (𝑝3 + 𝑝4 𝛿(𝑥)) log10(𝑑(𝑥, 𝑡))                                (14) 

with p1, p2, p3, and p4, close to - 1.4, - 0.7, 1.0 and 1.0, respectively.  140 

 

Figure 2. Linear relationship between alpha/beta and gamma/delta. Each dot represents one cross section of a certain river. 

Dots of the same color are from the same river. Manning’s number for each cross section is randomly generated between 

0.015 and 0.05. Note that, the best-fit line for each river is slightly different. The relationship using a uniform Manning’s 

number of 0.03 is also given in Figure S3. Individual fitting lines are shown in Figure S4.  145 

2.3 Parameter calibration 

Hydraulic parameter calibration is essentially an inverse problem that is often solved using the least squares approach. In this 

study, a non-linear least-squares solver, i.e. the Levenberg-Marquardt algorithm, is used to solve the calibration problem by 
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minimizing the objective function. An ensemble of 10 calibrations with different starting models are conducted to avoid 

local minima.   150 

Considering the large number of parameters (p1, p2, p3, and p4, and spatially varying Z0, γ and δ), regularization is used 

to stabilize the ill-posed problem (Pereverzyev et al., 2006; Schmidt, 2005). In this work, the Tikhonov type regularization is 

applied and the objective function is formulated following (Aster et al., 2018): 

min
𝚾
∅(𝑥) = min

𝚾
(‖𝑟(𝚾)‖2

2 + 𝜆2‖𝑳𝚾‖2
2)                                                                 (15) 

where X is vector containing the parameters described above; r(X) is the residuals between model predictions and 155 

observations (i.e. water level and width); λ2 is the regularization parameter that controls the strength of the regularization; 

and L is a roughening matrix that constrains the model space. In this study, the first-order regularization is used to smooth 

the model space. It is a finite difference approximation to the first derivative of the model. The larger λ is, the smoother the 

model parameters are. For detailed objective function and model calibration, please refer to the supporting information (Text 

S2).  160 

Essentially, by optimizing Eq. (15) using satellite derived observations of WSE and river width, we calibrate the two 

curves, i.e., the relationships between flow area / conveyance and depth as described by equations (13) and (14).  

3 Case study 

To test whether this approach is able to reproduce realistic flow area and conveyance curves as well as WSE using remote 

sensing data, we use the Songhua River as a test site (Figure S5). It is the longest tributary of the Amur (or Heilong Jiang), 165 

and somewhat representative of large rivers worldwide. It allows testing the approach using satellite data sets, such as 

altimetry and imagery, which will be available simultaneously from the future SWOT mission (Biancamaria et al., 2016). 

We use the same reach (433 km evenly divided by 23 cross sections) and boundary conditions as used in Jiang et al. (2019). 

Specifically, observed discharge is used as the upstream boundary while normal depth is set as downstream boundary. 

Inflows of three tributaries are from gauging records while remaining tributary inflows are simulations from a hydrological 170 

model (Jiang et al., 2019). The only available in-situ surveyed cross sections are from the late 1990s. These “real” area 

curves are only used as a benchmark for the calibration results. The validation is focused on the reproduction of WSE at two 

independent gauging stations as well as altimetry virtual stations. Currently, satellite altimetry derived WSE and satellite 

imagery derived river width are widely used data sets to study river dynamics (Alsdorf et al., 2007). Therefore, the 

calibration data sets used are WSE and water surface width, which are derived from CryoSat-2 altimetry and Landsat 175 

imagery, respectively. CryoSat-2 observations are the same as those used in Jiang et al. (2019) while widths are processed 

using the RivWidthCloud algorithm in Google Earth Engine (Yang et al., 2020). The experiments are conducted under 

several scenarios to test the capability of different data sets, i.e. WSE only, width only, and both WSE and width combined 
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(see Text S3 for further explanation). Spatio-temporal distribution of both data sets is shown in Fig. S6. We use the MIKE 

Hydro River model to implement this approach (see Text S2 for more details).  180 

 

Figure 3. Calibrated area-depth curves at 23 cross sections (chainage is given in each plot). Three scenarios are shown, i.e. 

calibration with water surface elevation data only (calibration #1), river width only (calibration #2), and both water surface 

elevation and width (calibration #3), respectively. The color band represents the mean ± standard deviation based on an 

ensemble of 10 calibrations.  185 

Results prove the feasibility of calibration of spatially varying area-depth curves using solely satellite data sets. Figure 4 

depicts the calibrated area-depth curves at 23 cross sections under the three scenarios. Compared to the curves derived from 

surveyed cross sections, calibrated ones are reasonably close at most locations. Interestingly, either WSE or river width is 

able to constrain the model to a certain degree (Figure 3), and calibrated model can reproduce WSE with similar RMSE at 

two gauging stations (see Fig. S7). However, calibration #2 (width only) has larger spread; calibration #3 (both WSE and 190 

width) shows the best match with the observed cross sections (Figure 3). Moreover, very dense observations of width (one 
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per 30 m) do not improve the calibration result compared to less dense one (one per 5 km, Fig. S8) although high-resolution 

imagery (30 m) can provide plenty of width observations. It should be noted that the reservoir in the upstream portion 

(chainage 20 - 90 km) is not modelled, which explains the large uncertainty of the curves in the upstream.  

 195 

Figure 4. Validation of simulated water level (non-frozen periods) at four stations. (a) and (c) are water levels at two virtual 

stations, i.e. data derived from Jason-2 altimetry. (b) and (d) are from two stream gauging stations. Note, in each plot, results 
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of the median and individual simulations of an ensemble of 30 calibrations (three scenarios of width observations, see Text 

S3) are shown.    

The calibrated model can reproduce WSE reasonably well compared with independent data sets. Figure 4 shows 200 

simulated WSE using calibrated curves shown in Figure 3. Overall, the accuracy of simulation is acceptable and comparable 

to what was achieved using a different approach (Jiang et al., 2019). A careful comparison indicates that the simulations are 

slightly better than those reported in Jiang et al. (2019), especially for low WSE. Compared to Yilan, Tonghe shows slightly 

higher RMSE (Figure 4) due to the underestimation of extremely high WSE in 2013, although the simulated discharge 

matches in situ observations well (Figure S9). This can be well explained by the calibrated curves. The curves at two 205 

neighboring cross sections (chainage 218.64 and 238.51 km) show deviations from the curves derived from surveyed cross 

sections beyond bankfull depth. Evaluation at two virtual stations also shows good agreements. However, model simulation 

is better than Jason-2 observations except during the 2013 flood by referring to the hydrograph of adjacent gauging stations 

(Figure 4).  

4 Discussion 210 

For our case study, models calibrated with either river width or WSE show similar performance in terms of RMSE of WSE 

at two gauging stations (Fig. S7). However, both cases have problems to fully constrain models and suffer from model 

ambiguity, which means parameters cannot be well determined. A direct consequence is that model simulation of either the 

WSE or river width is not physically meaningful (Fig. S10). Because both cases can achieve a reasonable area-depth 

relationship by making a trade-off between datum and WSE or river width. Therefore, both WSE and river width are needed 215 

to better constrain model parameters.  

Nevertheless, river width and WSE may play different roles in constraining parameters for different rivers depending on 

the channel shape. If a channel is embanked, for instance, model parameters may not be sensitive to the small changes of 

river width. This issue certainly needs further investigation. Obviously, observations of river width are easier to obtain and 

have higher frequency and larger coverage than altimetry-derived WSE (usually the frequency is lower than 10 days). That 220 

is, this approach can be applied in many rivers where altimetry data is also available given reliable discharge as the upstream 

boundary. This raises a question: Can area and conveyance curves be estimated using short-repeat altimetry missions, such 

as Jason or Sentinel-3? Our previous study (Jiang et al., 2019) shows that spatial sampling density is more important than 

temporal frequency in the context of hydraulic inversion and that Jason series alone are not able to constrain the spatially 

distributed parameters. The trade-off between spatial and temporal sampling density in inland radar altimetry merits further 225 

investigation. Moreover, rapid advances in drone technology also provide WSE and width for small rivers (Bandini et al., 

2020). Therefore, this approach is also applicable to rivers where satellite altimetry data are not available.    
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The new parameterization proposed in this paper can also be used with simulated discharge instead of observed 

discharge. We performed a preliminary investigation on the effect of simulated discharge errors on inverted area and 

conveyance curves. Specifically, for the upstream boundary, modelled discharge from a regional rainfall-runoff model is 230 

used instead of in-situ discharge (Fig. S11). With this setup, the calibrated 1-D hydrodynamic model can reproduce WSE 

reasonably well (~0.9 m, see Fig. S11). The accuracy is comparable to previous studies, such as Domeneghetti et al. (2014) 

although surveyed cross sections were used in those studies. This finding demonstrates that this approach has great potential 

to be applied in ungauged river basins.  

As we mentioned, this study only focuses on the main channel and does not account for overbank flow. In the presence 235 

of significant floodplains, the linearity of the curve may fail at bankfull depth as seen in Figure 1 and 3. To solve this 

problem, a second curve is needed to describe the overbank flow as suggested by Garbrecht (1990). On the other hand, 

instead of calibrating the second curve, real data (such as high resolution DEMs, or ICESat-2, etc.) of the non-inundated 

portion can be used to parameterize the curves.   

This approach opens up a range of possibilities to simulate and predict flow dynamics in data scarce regions. In addition 240 

to simulating WSE as illustrated in previous sections, discharge retrieval is also possible once the slope is known based on 

established conveyance curves. The future SWOT mission will deliver WSE and slope simultaneously, which can support 

discharge retrieval using this approach.  

5 Conclusions 

Directly calibrating roughness and cross-sectional geometry of river models is still challenging. In this paper, we propose a 245 

new parameterization method to calibrate 1-D hydrodynamic river models using altimetry and imagery observations. The 

workflow is based on the power-law relationships between flow area / conveyance and flow depth, which is not new and has 

been described half a century ago (Chow, 1959). In this study, we discovered that the two curves are very well correlated, 

and the relationship is generally independent of rivers. The novelty of this study is that the flow area and conveyance can be 

inverted directly using spatially distributed observations of WSE and river width given the boundary conditions. In this way, 250 

no explicit considerations of roughness and channel geometry are needed to solve for WSE.  

Our case study demonstrates that the curves can be estimated using solely remote sensing data, and the calibrated 

hydrodynamic model can reproduce WSE with fairly high precision. Further exploration indicates that this approach can be 

integrated into a hydrologic-hydrodynamic model for studying ungauged river basins.  

Current satellite imagery (Landsat, Sentinel, Gaofen, etc.) and altimetry (CryoSat-2, AltiKa-DF) can support this 255 

approach for relatively large rivers. This new parameterization may prove especially useful for poorly gauged rivers when 

high resolution data sets are available from the upcoming SWOT mission.  
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